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Lipoprotein retention in Bruch’s membrane is a key event in the pathobiology of early 
and intermediate age-related macular degeneration (AMD). However, the mechanism 
of lipoprotein retention in BrM is unknown. Given the established role of glycosamino-
glycans (GAG) in binding lipoproteins, our laboratory sought to determine the role 
of GAGs in AMD BrM. In this study, BrM GAG content in AMD pathobiology was 
analyzed in human postmortem tissue. Strikingly, increased levels of highly sulfated 
heparan sulfate were present in AMD Bruch’s membrane as compared to non-AMD 
samples. In addition, using scanning electron microscopy of postmortem AMD tissue, 
we show aggregates of lipoprotein-like particles on the retinal pigmented epithelium side 
of Bruch’s membrane adjacent to heparan sulfate. We also show that heparin displaces 
lipoproteins rich in apolipoprotein A1 from human BrM, suggesting their identity as 
high-density lipoproteins. Using human BrM immobilized to quartz crystal micro-
balance biosensor (QCM) chips, we show that heparan sulfate is required for lipoprotein 
binding to BrM and soluble heparan sulfate can remove lipoproteins bound to BrM. 
Thus, our data establish that heparan sulfate regulates lipoprotein deposition in AMD 
BrM. These findings provide a foundation for targeted therapies capable of either pre-
venting lipoprotein accumulation or removing drusen in the early and intermediate 
stages of AMD prior to vision loss.
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 Age-related macular degeneration (AMD) is the leading cause of blindness in developed 
countries ( 1 ). This devastating disease affects 196 million individuals and is predicted to 
increase to 288 million by 2050 ( 1 ). Most of these patients suffer from the early and 
intermediate “dry” AMD and are currently without treatment options due to an incom-
plete mechanistic understanding of this complex disease. Genetic, biochemical, and 
 histochemical analyses have converged to establish a role of extracellular matrix (ECM) 
metabolism in the biogenesis of drusen, a defining hallmark change in AMD ( 2         – 7 ). 
However, of the more than 100 clinical trials for AMD, none have targeted ECM changes. 
Treatment of AMD in early and intermediate stages has the potential to prevent vision 
loss early in the disease process and have an immense impact on quality of life ( 8 ) and 
health economics ( 9 ).

 Drusen are the pathognomonic feature of early and intermediate AMD. Substantial 
clinical evidence indicates that drusen are not merely an association, but instead are causally 
related to the development and progression of AMD. Most notably, large drusen are 
associated with atrophy and disruption of the outer retinal layers, and diminished retinal 
sensitivity is observed directly overlying the drusen ( 10 ,  11 ). In addition, nascent geo-
graphical atrophy (GA), a degenerative process that damages the retina, occurs over large 
drusen ( 12 ,  13 ). The precise spatial relationship between drusen and damage observed in 
the outer retinal layers strongly suggests direct involvement of drusen in AMD progression. 
Additionally, histopathological examination of postmortem AMD eyes has consistently 
revealed drusen-related changes, such as disruption and dysmorphia of the RPE imme-
diately overlying drusen ( 14 ,  15 ). It is noteworthy that drusen are characterized by high 
concentrations of oxidized lipoproteins and hydroxyapatite, which are believed to con-
tribute to inflammation and serve as a focal point for the pathobiology of AMD ( 16 ,  17 ).

 Drusen are extracellular aggregates of lipoprotein-like particles that form between the 
RPE basal lamina and the inner collagenous layer (ICL) of Bruch’s membrane (BrM). 
With normal aging, lipoproteins accumulate on top of the ICL of BrM prior to the onset 
of drusen ( 5 ). This finding highlights the early involvement of lipoprotein deposition in 
the pathogenesis of drusen. Basal linear deposits, which are histologically linked to AMD 
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and drusen, have been characterized as lipoprotein-like deposits 
on top of the ICL of BrM ( 18 ). Drusen form on top of the ICL 
of BrM, exhibiting a composition of apolipoproteins and esterified 
cholesterol characteristic of plasma lipoproteins ( 5 ,  18 ). Taken 
together, these clinical studies suggest BrM lipoprotein accumu-
lation and drusen formation drive AMD pathobiology.

 BrM is an acellular 3-layered (inner collagenous, elastic, and 
outer collagenous layers) ECM abutted by the RPE and chori-
ocapillaris endothelial cell basal lamina. BrM is composed of 
collagens (type IV collagen in RPE basal lamina and type I and III  
collagens in the ICL) ( 19   – 21 ), laminins ( 20 ,  22 ), fibronectin 
( 21 ) and sulfated glycosaminoglycans (GAGs), including hepa-
ran sulfate (HS) ( 23   – 25 ). However, the compositional changes 
of BrM in AMD and the relationship of these changes to lipo-
protein particle retention are not understood. Given the simi-
larities between plasma and BrM lipoproteins, the sub-RPE 
lipoprotein retention hypothesis of drusenogenesis is analogous 
to the subendothelial ECM retention hypothesis in atheroscle-
rosis ( 26 ,  27 ). Studies in atherosclerosis have shown that 
increased retention, rather than increased influx, of lipoproteins 
is the primary factor driving subendothelial retention ( 26 ,  27 ). 
This retention is facilitated by the interaction of negatively 
charged sulfated GAGs in the arterial ECM with binding sites 
on apolipoproteins made up of positively charged amino 
acids ( 28     – 31 ).

 In this study, we sought to analyze the changes in GAG content 
and composition to BrM in AMD and to elucidate the role of 
BrM in lipoprotein retention. We show that the predominant 
GAG in BrM is HS, which is increased twofold in AMD macula 
compared to controls. In addition, we show the interaction of 
lipoproteins and sulfated GAGs by scanning SEM in AMD BrM 
and quantify the interaction between lipoproteins and human 
BrM HS using quartz crystal microbalance biosensor (QCM) 
containing immobilized BrM. This interaction can be disrupted 
with exogenous heparin, suggesting a therapeutic  direction for 
drusen removal from the retina. 

Results

Glycosaminoglycan Analysis of AMD BrM. We analyzed the GAG 
composition of BrM in normal and AMD retina (Fig.  1 and 
SI Appendix, Table S1) from eyes genotyped for the major high-
risk alleles (SI Appendix, Tables S2 and S3). Fundus photographs 
were taken of all postmortem globes to stage AMD. Representative 
fundus photos from an aged control (Fig. 1A, Left) and intermediate 
AMD with drusen deposition (Fig. 1A, Right) are shown. GAGs 
were extracted from human postmortem BrM tissue and quantified 
by glycan reductive isotope labeling (GRIL) LC/MS analysis of 
disaccharides liberated by digestion of the GAGs by bacterial 
chondroitinase ABC [to measure chondroitin sulfates (CS)] or 
heparin lyases [to measure heparan sulfate (HS)]. GRIL-LC/MS 
analysis of total GAG in macula and periphery of postmortem BrM 
tissue from aged controls and patients with early/intermediate AMD 
showed that HS is the predominant GAG present within BrM and 
the total amount of HS relative to protein is higher in early and 
intermediate AMD macular BrM (335 ± 56 ng HS controls vs 
528 ± 70 ng HS AMD, P < 0.05, Fig. 1B and SI Appendix, Table S1). 
Disaccharide analysis of HS showed an increase in the unsulfated 
disaccharide D0A0 (174 ± 26 ng control vs 270 ± 32 ng AMD, 
P < 0.05), the monosulfated disaccharides D0S0 (63 ± 13 ng control 
vs 100 ± 16 ng AMD, P = 0.09) and D0A6 (32 ± 5 ng control 
vs 48 ± 6 ng AMD, P = 0.07), the disulfated disaccharide D2S0 
(13 ± 8 ng control vs 19 ± 10 ng AMD, P = 0.25), and the trisulfated 
disaccharide D2S6 (20 ± 7 ng control vs 41 ± 9 ng AMD, P = 0.08) 

(Fig. 1 C and D, SI Appendix, Table S1). It is noteworthy that the 
relative mole percentage of the individual HS disaccharides did 
not change, suggesting a generalized increase in HS chains and no 
relative increase in specific disaccharides (Fig.  1E). The elevated 
amount of HS levels in BrM did not correlate with common AMD 
risk single nucleotide polymorphisms at Chromosome 1q32 or 
Chromosome 10q26 (SI Appendix, Tables S2 and S3). Interestingly, 
CS analysis showed no changes in composition or content in the 
AMD macula (Fig. 1 F–H). A comparison of GAGs obtained from 
the region peripheral to the macula in AMD and controls did not 
reveal any changes in composition or content of HS (SI Appendix, 
Fig. S2 A–C) or CS (SI Appendix, Fig. S2 D–F). Thus, the increase 
in HS was restricted to the region of high drusen content. The 
accumulation of highly negatively charged HS in AMD BrM 
implies that overall charge of BrM is dramatically increased.

 Given the potential role of HS to trap lipoproteins in AMD 
BrM, we examined its localization in BrM and in drusen by immu-
nohistochemistry. Samples were treated with heparin lyases, which 
depolymerizes the chain and leaves behind a core protein with HS 
“stubs” which contain a neoepitope recognized by mAb 3G10. 
Staining of treated samples showed that HS proteoglycans are 
present in AMD BrM and encapsulates drusen and/or are present 
in a thin layer of BlamD (Basal laminar deposits) overlying drusen 
(SI Appendix, Fig. S3 , Top  panel). Interestingly, staining samples 
with mAb 10E4, which specifically recognizes N-sulfated HS 
showed diminished N-sulfated HS underlying drusen (SI Appendix, 
Fig. S3 , Bottom  panel). It is also noteworthy that reduced HS 
staining was detected in the core of drusen (SI Appendix, Fig. S3 , 
﻿Top  and Middle  panels).  

Heparan Sulfate Colocalization With Lipoprotein Particles in 
AMD BrM. Scanning electron microscopy with Ruthenium Red 
staining was performed to examine the localization of HS in AMD 
BrM (N = 2 subjects) (Fig. 2A, black staining). Intense Ruthenium 
Red staining was observed in the ICL of BrM. Strikingly, spherical 
particles that resemble lipoproteins or vesicles within the ECM 
were abundant anterior to HS in BrM. We refer to these particles 
as lipoprotein-like particles given their morphology on SEM. The 
particles were manually annotated (orange) and their distribution 
was determined across the specimen by creating a 1 micron2 grid 
(Fig. 2A). Analysis of the coverage area of the particles (Fig. 2B) 
within BrM (orange and Zone −1 to 1 demarcates the most 
posterior border of HS staining in BrM) shows that the retention 
occurred anterior to BrM HS. The average diameter of these 
particles did not vary significantly (Fig. 2C). The particles that 
aggregate anterior to BrM HS in drusen (Fig. 2 D–E) had similar 
characteristics (Fig.  2F). These findings suggest that BrM HS 
might act as a nidus for lipoprotein retention.

ApoA1-Containing Lipoprotein Particles are Eluted from 
BrM with Heparin. Based on the electron microscopy findings 
and prior work demonstrating the presence of lipoproteins in 
BrM, we examined the role of HS in lipoprotein retention (5). 
Immunohistochemistry of small and med/large drusen in patients 
with AMD had detectable levels of apolipoprotein ApoA1 
[characteristic of high-density lipoproteins (HDL)] (Fig. 3A, Top 
panel). ApoB100 [characteristic of low density (LDL) and very low-
density lipoproteins (VLDL)] was also present on some drusen but 
identified less frequently than ApoA1 by immunohistochemistry 
(Fig. 3A). To further analyze the lipoprotein class associated with 
BrM HS, BrM were isolated from aged donors (N = 12 subjects), 
gently minced, and incubated with 1 mg/mL of pharmaceutical 
grade unfractionated heparin to displace any bound lipoproteins. 
Displaced lipoprotein particles were separated by fast protein liquid 
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chromatography (FPLC), and the fractions were analyzed for the 
presence of esterified cholesterol given the abundance of esterified 
cholesterol in all lipoprotein classes. FPLC fractionation showed 
two prominent peaks. A first peak, enriched for unesterified 
cholesterol (Fig. 3B, fraction 1 to 6), had no detectable levels of 
apolipoproteins ApoA1 (characteristic of HDL) and ApoB100 
(characteristic of LDL and VLDL) (Fig.  3C, fraction 1 to 6). 
A second peak contained mostly esterified cholesterol (Fig. 3B, 
fraction 15 to 23) and HDL-associated ApoA1 (Fig. 3C, fraction 
16 to 24). It is notable that ApoB100 particles were present in 
some samples but identified less frequently than ApoA1. These 
results indicated that HDL-like lipoproteins were present in 
BrM and dissociable by heparin, consistent with the idea that 
the particles were associated with endogenous BrM HS.

Lipoprotein Binding in BrM Is Dependent on Heparan Sulfate. To 
directly test whether lipoprotein retention depends on the physical 
interaction of the lipoproteins with BrM HS, we used a QCM. In 
these experiments, 4 mm diameter punch biopsies from human 
postmortem BrM (N = 2 subjects) were applied to gold plated 
QCM chips oriented with the ICL of BrM facing away from the 
chip and exposed to the analyte solution. The samples were air 
dried at 4 °C overnight and rehydrated in PBS. Human plasma 
HDL was used in these studies because the recovered lipoproteins 
from BrM is low. To measure binding, purified plasma HDL (25-
400 µg/mL) was added as the analyte and flowed over to the chip 
at 10 µl/min (Fig. 4). Association times were measured for 900 s. 
Under these conditions, exogenous plasma HDL showed high 
affinity binding (~195 nM) to BrM and saturability (Fig. 4C). 

Fig. 1.   Glycosaminoglycan analysis of AMD macula BrM. Representative photos of postmortem globes after removal of the neural retina in normal aged controls 
(Left) and early/intermediate AMD (Right). Orange arrows indicate the presence of many intermediate and some large drusen in a patient with intermediate AMD 
(A, Left panel). (B) Analysis of the total BrM protein, heparan sulfate, and chondroitin sulfate content in BrM in the macula BrM and peripheral BrM shows that 
BrM contains a high content of HS, and we detected statistically significant higher level of BrM HS in the macula of patients with early and intermediate AMD 
(N = 7 subjects; 12 eyes, SI Appendix, Table S1 for demographics) compared to aged controls (N = 11 subjects; 17 eyes, SI Appendix, Table S1 for demographics). 
(C–E) Macular BrM HS disaccharide composition analysis shows a generalized increase HS disaccharide content including unSulf and highly sulfated species  
(C and D), but when normalizing to HS mole percentage all differences disappear (E) suggesting that the amount of HS and not the composition of HS is significantly 
altered in AMD BrM. In contrast, macula chondroitin sulfate composition is unchanged (F–H). Structures of disaccharide units used for glycosaminoglycan analysis 
are shown in SI Appendix, Fig. S1. Mac—macula, Ret—Retina, UnSulf—unsulfated, 1-Sulf—one sulfate group, 2-Sulf—two sulfate groups, 3-Sulf—three sulfate 
groups, N/D—not detected. * indicates P < 0.05. The scale bar indicates optic nerve head vertical diameter.
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Binding was dependent on BrM HS because degradation of HS 
by heparin lyases dramatically reduced HDL binding (Fig. 4 D−E).

 To test whether HDL binding to BrM could be blocked by exog-
enous GAG, we mixed heparin with plasma HDL and applied the 
mixture to the chip. Heparin showed a dose-dependent inhibition of 
binding ( Fig. 4F  ). The unfractionated heparin used in this study binds 
and activates antithrombin which inhibits coagulation through inac-
tivation of several plasma serine proteases. To circumvent this poten-
tially significant side effect profile, we examined heparin-like material 
derived from MST mastocytoma cell lines (TEGA Therapeutics, Inc.) 
which lack anticoagulant activity ( 32 ). HS09, a form of nonantico-
agulant MST heparin that lacks the key 3- O﻿-sulfate group required 
for antithrombin binding, blocked HDL binding. HS37, which lacks 
2- O﻿- and 3- O﻿-sulfation had a similar effect ( Fig. 4G  ). HS37 does not 
bind to platelet factor 4 and thus has diminished ability to induce, 
another side effect of heparin, heparin-induced thrombocytopenia 
( 32 ). These findings indicate that HDL binding can be diminished 
with modified forms of heparin, consistent with the observation that 
binding occurs to HS in BrM.   

Discussion

 Prior research has established that lipoprotein aggregation in BrM 
is a prominent aging effect and a key early event in the formation 
of drusen and the pathogenesis of AMD. Our study adds to these 
findings by establishing that HS is significantly increased in AMD 

BrM and is a major factor in the retention of lipoprotein-like 
particles in the early and intermediate stages of AMD. Our find-
ings also establish alteration of BrM HS is a viable pharmacologic 
target in AMD. The inhibition of lipoprotein binding to BrM by 
heparinoids suggests a potential pharmacological approach for 
preventing lipoprotein deposition. Their ability to displace lipo-
proteins bound to BrM suggests a potential pharmacological 
approach for reversing lipoprotein deposition.

 These findings open additional unanswered questions regarding 
the regulation HS and origin and identity of the lipoprotein par-
ticles aggregating into BrM. HS is assembled by the copolymeri-
zation of glucuronic acid and N-acetylglucosamine residues to a 
linkage tetrasaccharide covalently bound to a proteoglycan core 
protein ( 33 ). A family of sulfotransferases and an epimerase mod-
ifies these residues in segments, creating sulfated domains of vari-
able length interspersed by nonsulfated domains ( 33 ). The diversity 
of HS is due to variable chain length (catalyzed by the glycosyl-
transferase enzymes Ext1 and Ext2) and variable sulfation (cata-
lyzed by the sulfotransferase enzymes NDST1:N-acetylglucosamine 
N-deacetylation-N-sulfation, HS2ST1:uronyl 2- O﻿-sulfation, and 
HS6ST1:N-acetylglucosamine 6- O﻿-sulfation) ( 33 ). HS chains also 
undergo remodeling by heparanases, which trims the chains, and 
endosulfatases that selectively remove 6- O﻿-sulfate groups after their 
presentation in the ECM ( 33 ). The factors that regulate the com-
position of the chains are diverse and reflect both the metabolic 
state of the cells, as well as the expression levels of the enzymes, 

Fig. 2.   Particle retention anterior to HS in BrM. Repre-
sentative scanning electron microscope sections stained 
with Ruthenium Red and subsequent particle analysis 
of BrM and drusen in 83-y-old female with early AMD 
(A and D) (Analysis was replicated in N = 3 regions from 
2 donors, 83-y-old female with early AMD and 95-y-old 
female with early AMD). Particles were segmented based 
on morphology, and HS was identified by Ruthenium 
Red staining in BrM (A and D). 1 micron2 grid was created 
to analyze the spatial relationship between BrM HS and 
matrix vesicles. Zone −1 and Zone 1 are defined as the 
1 µm2 posterior and anterior to the GAG staining in BrM 
(A), respectively. Each additional zone is 1 µm2 anterior or 
posterior. For analysis of drusen (D) 1.4 µm2 was used. 
Analysis of the coverage area (B) and diameter (C) of par-
ticles within BrM (orange and Zone −1 to 1 demarcates 
the most posterior border of HS staining in BrM) shows 
that the retention of particles occurs anterior to BrM HS 
(B), however, particle diameter is largely unchanged (C). 
This same analysis was performed underlying drusen 
(D–F), where particles also are present anterior to BrM 
HS (D–E) and particle diameter is also unchanged (F). RPE 
BLam—retinal pigmented epithelium basal lamina, BrM 
HS, Bruch’s membrane heparan sulfate, CC—choriocap-
illaris. (Scale bar, 1.4 µm, A and C.)
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and the core proteins. Nothing is known about the mechanism of 
HS regulation in BrM in healthy or AMD retina.

 Histologically, prior to AMD onset, lipoprotein-like particles 
accumulate in BrM ( 18 ,  34 ). These particles appear to be heter-
ogenous  in morphology and may be a mixture of membrane ves-
icles and lipoproteins like those found in plasma HDL. However, 
the origin and the subclass of the lipoprotein-like particles that 
aggregate in BrM are not well described. Prior studies have pro-
vided conflicting evidence, with some studies suggesting ApoB100 
containing VLDL-like particle aggregates in BrM ( 35 ,  36 ), whereas 
recent evidence suggests ApoA1-containing HDL-like particle 
aggregates in BrM ( 25 ). Human RPE cells express apolipoproteins 
and other genes involved in lipoprotein metabolism ( 37 ). Notably, 
large population-based clinical studies have correlated high serum 
HDL levels and single nucleotide polymorphisms in the reverse 
cholesterol transport pathway to AMD ( 2 ,  38     – 41 ). These obser-
vations are increasingly relevant to the aging community, given 
the interest in augmenting the reverse cholesterol transport path-
way and HDL serum profiles for the treatment of cardiovascular 
disease. In fact, in 2022, Nordestgaard and colleagues reported 
that cholesteryl ester transferase (CETP) deficiency, mimicking 
pharmacological inhibition of CETP, was associated with a lower 
cardiovascular morbidity but markedly higher risk of AMD ( 39 , 
 42   – 44 ). In our analysis of BrM lipoprotein accumulation, we 
found both ApoA1 and ApoB100 containing lipoprotein particles 
were present in BrM and drusen, but ApoA1-containing lipopro-
tein particles appear to be the predominant lipoprotein particle 
based on our methodology. However, the pathobiology of HS 

retention extends beyond HDL particles in BrM, as HS has been 
shown to interact with a diverse range of macromolecules, includ-
ing other ApoE containing lipoproteins, proteins, and extracellular 
vesicles such as exosomes ( 33 ,  45 ). Given that drusen formation 
occurs outside of the blood–retinal barrier, efforts to augment 
systemic lipoproteins could also affect AMD progression. Thus, 
determining the origin and precise lipoprotein profile in AMD is 
an important goal for future of aging research.

 In atherosclerosis, it is noteworthy that once retained in the 
ECM, lipoproteins aggregate and undergo modifications includ-
ing lipid oxidation which serve as a nidus for inflammation ( 46 ). 
Analogous biology appears to be occurring in BrM in patients 
with AMD ( 16 ,  17 ). A significant contrast lies in AMD, where 
the lipoprotein-like material remains extracellular due to the lack 
of immune cell infiltration, whereas atherosclerotic plaques typi-
cally exhibit lipid-laden macrophages. Thus, the role of BrM in 
immune sequestration of the extracellular deposits is an area of 
future study and relevant to AMD pathogenesis.

 The application of QCM technology to AMD research is 
unique . The ability to immobilize BrM on gold chips allowed us 
to examine lipoprotein binding and its dependence on HS. 
Moreover, the method allowed us to show that  exogenous heparins 
can block binding of lipoproteins to BrM. This observation sup-
ports work showing that heparin inhibits lipoprotein particles 
from binding to decellularized RPE cultures ( 25 ). The QCM 
technology demonstrated here is adaptable to test the binding 
properties of BrM with a range of analytes. Taken together, these 
observations open the possibility of using nonanticoagulant forms 

Fig. 3.   ApoA1-containing lipoproteins are removed from 
BrM with heparin. (A) Representative histology sections 
from a patient with intermediate AMD with small drusen 
(Left) and med/large drusen (Right) stained for lipoprotein 
markers ApoA1 (A, Top panel) and ApoB100 (A, Bottom 
panel). ApoA1 staining was observed frequently in 
drusen and Bruch’s membrane (N = 4 subjects, 73-y-old 
male with intermediate AMD, 86-y-old female without 
AMD, 90-y-old male with early AMD, and 95-y-old female 
with early AMD). (B and C) Bruch’s membrane from 
aged postmortem donors was minced and treated with 
heparin to elute lipoproteins (N = 12 subjects, 75 to 95 y-
old). (B) FPLC fractionation shows two prominent peaks, 
a peak at fraction 4 largely composed of unesterified 
cholesterol (B, fraction 1 to 6), and no detectable 
levels of the apolipoprotein core proteins ApoA1 and 
ApoB100 were identified (C, fraction 1 to 6). A second 
peak at fraction 19 and 20 contains mostly esterified 
cholesterol (B, fraction 15 to 23) and contains the HDL-
associated ApoA1 core protein (C, fraction 16 to 24). HDL 
and LDL were positive controls for ApoA1 and ApoB100, 
respectively. AF—autofluorescence, FPLC—fast protein 
liquid chromatography, HDL—high-density lipoprotein. 
RPE—retinal pigmented epithelium, CC—choriocapillaris. 
(Scale bar, 10 µm.)
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of heparin and possibly HS as agents to reduce further lipoprotein 
deposition in patients with AMD and possibly to remove drusen.  

Methods

Glycan Reductive Isotope Labeling and Liquid Chromatography/Mass 
spectrometry of GAG. Donor eyes were procured from the San Diego Eye Bank 
from 65 to 90 y-old, including patients with AMD. A <12-h death-enucleation 
interval and <24-h receiving interval were used to ensure GAG stability. After 
removal of the neurosensory retina, high-resolution, digital color fundus photo-
graphs were taken of the posterior pole. Analysis of subretinal drusenoid depos-
its was not possible in postmortem specimens. AMD grading was performed 
according to the 9-step Minnesota Grading scale and AREDS categories (47). 
Macular and superior mid-peripheral punches (6 mm diameter) of the RPE/BrM/
choroid complex were performed. BrM was isolated from the RPE/BrM/choroid 
complex by microscopic dissection. Clinical data including past ocular history 
and AMD status were documented. PCR genotyping was performed on ocular 
tissue for the common CFH (rs1061170) and HTRA1/ARMS2 (rs11200638) single 
nucleotide polymorphisms (SI Appendix, Tables S2 and S3). GAGs were quanti-
fied by GRIL-LC/MS (48). Briefly, GAGs were isolated from tissue after protease 
digestion and DEAE anion-exchange chromatography, and the reducing end of 
lyase-generated disaccharides were tagged with [12C6]aniline. Samples were 
mixed with [13C6]aniline-tagged GAG disaccharides standards and quantified 
by LC/MS. Individual disaccharides were quantified relative to known amounts 

of mass-tagged standards and summed to give the total weight of GAG and 
disaccharide in nanograms.

Human CFH and ARMS2/HTRA1 Genotyping. Postmortem human tissue was 
used in the Qiagen DNeasy Blood and Tissue Kit (Cat. No. 69504) spin column 
procedure and followed with a PCR using a 55 °C annealing temperature.

HTRA1 Forward Primer: CGGATGCACCAAAGATTCTCC; HTRA1 Reverse Primer: 
TTCGCGTCCTTCAAACTAATGG; CFH Forward Primer: AATCACAGGAGAAATAAATATAGG; 
CFH Reverse Primer: ATGTAACTGTGGTCTGCGCTT. Following PCR amplification, 
samples were submitted to Azenta Life Sciences for Sanger Sequencing. Results 
from the sequencing were compared using the Benchling platform. The DNA 
sequence of each gene was added to the program from the ensembl ID; CFH 
(ENST00000367429), HTRA1 (ENST00000368984). The sequencing from each 
patient was aligned with the ensembl ID sequence to check for differences at 
the SNP sites.

GAGomics Data Analysis. Subject and eye-level demographic and clinical 
characteristics are displayed as count (%) and mean (95% CI) for categorical and 
continuous variables, respectively. Comparisons were made across AMD status, 
HTRA1 Status Genotypes, and CFH Status Genotypes. Subject-level continuous 
and categorical parameters were compared using t-tests and Fisher’s Exact tests, 
respectively. Eye-level continuous parameters were compared using linear mixed-
effects models. All linear mixed-effects models were fit with a random intercept to 
adjust for within-subject variability, controlling for the correlated measurements 
of subjects with both eyes included in the study. When comparisons were made 

Fig. 4.   Lipoprotein particle binding to BrM is dependent on HS. Human BrM punch (N = 2 subjects, 86-y-old female and 80-y-old male, without AMD) were 
immobilized on gold-coated Attana QCM biosensors (A). Delta Hz frequencies represent changes in mass on the QCM biosensor. Human plasma HDL analytes 
were injected over BrM QCM biosensor to analyze binding affinity (B). At low flow rates (10 µL/s) HDL showed high affinity binding (KD = 195 nM) (C and E). 
BrM treated with heparin lyases to remove endogenous HS treated in parallel failed to show binding (D and E). Soluble heparin diminished binding in a dose-
dependent manner (F). Nonanticoagulant forms of heparin (HS09 and HS37) also blocked HDL binding to BrM compared to controls (G). QCM—quartz crystal 
microbalance, HDL—high-density lipoprotein.
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across three subgroups, comparisons of subject-level continuous parameters 
were evaluated using ANOVA, and comparisons of eye-level continuous param-
eters were evaluated using mixed-design ANOVA. The statistical analysis was 
conducted using the R programming language for statistical computing, Version 
4.4.0 [R Core Team (2022). R Foundation. Vienna, Austria]. P-values less than 0.05 
were considered statistically significant.

Heparan Sulfate Immunohistochemistry. Postmortem human tissue isolated 
from an 86-y-old female without AMD and a 90-y-old male with early AMD from 
the San Diego Eye Bank with a postmortem interval of 16 h. The posterior pole 
was isolated, and a 4 mm punch of Retina/RPE/Choroid was obtained from the 
macula and embedded in OCT and flash frozen without fixation. Cross-sections 
(10 µm) were cut with assistance from the La Jolla Institute for Immunology 
Histology Core. Frozen sections were air dried, fixed with 95% ethanol, and treated 
with 0.3% hydrogen peroxide in PBS, and then blocked with 3% BSA in PBST. 
Heparin lyase digestion was performed with Hep I/II/III 5 mU/mL for 1 h at room 
temperature as a control. The tissue was then treated with primary antibody 10E4 
or 3G10 to stain for N-sulfated HS chains or HS stubs (49). Slides were washed and 
then treated with secondary donkey anti-mouse IgM peroxidase and anti-mouse 
IgG peroxidase, respectively, at 1:2,000. 3,3′-diaminobenzidine and hematox-
ylin treatment were performed and then slides were imaged on a Zeiss AxioLab 
Microscope at 100× magnification.

Scanning Electron Microscopy Analysis of GAGs in Human BrM. Postmortem 
human tissue isolated from N = 2 subjects (83-y-old female with early AMD and 
95-y-old female with early AMD) from the San Diego Eye Bank with a postmortem 
interval of less than 5 h. The globe was immediately preserved in 4% paraform-
aldehyde. The posterior pole was isolated, and a 2 mm punch of Retina/RPE/
Choroid was obtained from the macula and fixed in 2.5% glutaraldehyde, 4% 
paraformaldehyde in 100 mM sodium cacodylate buffer. Samples were rinsed 
and stored in a cryoprotectant 4:3:3;1 × PBS:glycerol:ethylene glycol. A foveal 
sample was bisected and embedded in agarose, and 50 to 200 µm vibratome 
sections were cut. The most intact sections were then used for staining and fixation 
with dehydration in ascending concentrations of ethanol and embed in epoxy 
resin. The samples were then postfixed with 1.2% glutaraldehyde with 0.05% 
ruthenium red and 0.06 M sodium cacodylate buffer, then further postfixed with 
1.6% osmium with 0.05% ruthenium red 0.06 M sodium cacodylate buffer (50). 
Ruthenium red is a cationic dye used to stain negatively charged GAGs. Ultrathin 
sections (60 to 80 nm) were then cut using a Leica UC7/FC7 ultramicrotome (Waitt 
Advanced Biophotonics Core, Salk Institute). SEM imaging was performed on 
the Carl Zeiss SIGMA Variable Pressure Field Emission Gun Scanning Electron 
Microscope equipped with an ATLAS montage imaging module and the Shuttle 
and Find correlative microscopy navigation module to generate images and 
high-throughput workflow (Waitt Advanced Biophotonics Core, Salk Institute). 
Lipoprotein-like particles were identified based on the characteristic spheroid 
shape and homogenous electron lucent core morphology. SEM sections with 
drusen deposits (N  =  3 sections) in BrM were analyzed using segmentation 
with ImageJ to determine the distribution of particle diameter and percent area 
of occupied by particles in various zones. Ruthenium red staining was used to 
identify GAGs on SEM images. Zones (1 µm2) were created for analysis of GAG-
lipoprotein spatial relationship where the border between Zone −1 and Zone 1  
is defined as the 1  µm2 posterior and anterior to the GAG staining in BrM, 
respectively. Each additional zone is 1 µm2 anterior or posterior. For analysis of 
drusen, 1.4 µm2 was used. Statistical analysis of particle size and spatial rela-
tionship between GAGs was performed using GraphPad software. Representative 
images were displayed.

ApoA1 and ApoB100 Immunohistochemistry. Postmortem human tissue iso-
lated from 4 subjects (73-y-old male with intermediate AMD, 86-y-old female 
without AMD, 90-y-old male with early AMD, and 95-y-old female with early 
AMD) from the San Diego Eye Bank with a postmortem interval of less than 24 h. 
Briefly, macular sections were embedded in OCT and flash frozen, and thin sec-
tions were cut with assistance from the La Jolla Institute for Immunology Histology 
Core. Frozen sections were dried, fixed with 95% ethanol and treated with 0.3% 
hydrogen peroxide in PBS and then blocked with 3% BSA in PBST. The tissue 
was treated with primary antibody Anti-Human ApoA1, rabbit IgG (R7D Systems 
Cat# MAB36641). For ApoB100, the primary antibody used was Biotin-Goat 

anti-Human ApoB100 (Academy Bio-Medical Company, Cat# 20B-G1a). Slides 
were washed and treated with 1:2000 dilution secondary antibody. For the ApoA1 
slides, the secondary antibody used was Invitrogen Alexa Fluor 488 donkey anti-
rabbit IgG (Invitrogen, ThermoFisher Cat# A21206), and for the ApoB100, the 
secondary antibody was Streptavidin Alexa Fluor 488, conjugate (Invitrogen, 
ThermoFisher, Cat# S32354). RPE autofluorescence was distinguished using 
unstained slides and overlay with 596 excitation and 615 emissions. Control 
slides did not have secondary antibody. Representative images were displayed. 
Nuclear staining done using 1:5000 Hoechst stain. Slides were imaged on a Zeiss 
AXIO Observer D1 Microscope at 63x magnification.

BrM Lipoprotein Particle Separation by Fast Protein Liquid Chromato­
graphy. Aged BrM (N = 12 subjects, aged 75 to 95 y-old) was isolated using 
gentle mechanical dissection and then minced with a razor blade and then incu-
bated overnight at 4 °C with 1 mg/mL pharmaceutical grade heparin (derived 
from porcine intestinal mucosa, Shenzhen HepaLink Pharmaceuticals) in sterile 
PBS on a plate rocker. Soluble particles were then concentrated to 250 µL in 
volume using 3000 molecular weight cutoff centrifugal filters (Amicon Ultra-3 K, 
Sigma-Aldrich) and separated by gel-filtration fast protein liquid chromatogra-
phy. Samples were loaded on a GE Superose 6 10/30 GL column in 0.15 M sodium 
chloride containing 1 mM ethylenediaminetetraacetic acid and 0.02% sodium 
azide, pH 7.4. Thirty six fractions of 0.5 mL were collected (0.5 mL/min). Esterified 
and unesterified cholesterol were determined using Amplex Red Cholesterol 
Assay Kit on FPLC fractions (Invitrogen; A12216).

Western Blots. FPLC samples were concentrated (Amicon Ultra-3  K, Sigma-
Aldrich), and then pooled fractions were reduced with beta-mercaptoethanol, 
fractionated by SDS-PAGE on 4-12% Bis-Tris gradient gels (NuPage, Invitrogen), 
and transferred to a PVDF membrane (Power Blotter Select Transfer Stack; Thermo 
Fisher Scientific; PB5210) using lab standard methods. Membranes were blocked 
with fish serum blocking buffer (Thermo Scientific; 37527) for 1 h and incubated 
overnight at 4 °C with respective antibodies. Secondary antibodies were incubated 
for 1  h the following day and visualized with an Odyssey IR Imaging System 
(LI-COR Biosciences). Western Blot antibodies include Biotin-Goat Anti-Human 
ApoB-100 (Academy Biomedical Company, Inc; 20B-Gla; 1:5000), rabbit mon-
oclonal anti-hApoA1 (R&D Systems; MAB36641; 1:500), Streptavidin (LicorBio; 
926-68031; 1:5,000), and goat anti-rabbit (LicorBio; 926-32211; 1:5,000)

Quartz Crystal Microbalance of BrM using Heparin and Full-length HS spe­
cies. BrM was isolated using gentle mechanical dissection of the overlying RPE and 
underlying choroid with Finesse Maxgrip forceps and a Finesse Flexloop (Alcon, CA) 
with a dissecting microscope, and gentle decellularization was performed with hypo-
tonic solutions. Four-mm diameter tissue biopsy punch (Miltex, NJ) of isolated BrM 
was positioned on gold-coated Attana QCM chips and dried at 4 °C overnight (Attana 
Life Science and Diagnostics, Sweden). BrM punches were treated with a mixture of 
heparin lyases I/II/III (2.5 mU of each/mL, overnight at room temperature). The QCM-
BrM chips and QCM-BrM chips treated with heparin lyases were analyzed in parallel 
on the Attana QCM biosensor to examine the binding of lipoproteins to BrM. After 
overnight stabilization, 25 to 400 µg/mL lipoprotein analyte in PBS was injected at  
10 µL/min at 22 °C. Association and dissociation were monitored for 500 s and 400 s, 
respectively. The delta Hz was measured for 30 min generating long association and 
disassociation phases. Kinetic binding curves were used to calculate the apparent 
affinity (KD) and association (ka) and disassociation (kd) rates for various lipoprotein 
species. Two independent experiments were conducted using Bruch’s membrane 
(BrM) from two subjects (N = 2) to support the reproducibility of the findings.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.
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