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117 and drusen, have been characterized as lipoprotein-like deposits
118 on top of the ICL of BrM (18). Drusen form on top of the ICL
119 of BrM, exhibiting a composition of apolipoproteins and esterified
120 cholesterol characteristic of plasma lipoproteins (5, 18). Taken
121 together, these clinical studies suggest BrtM lipoprotein accumu-
122 lation and drusen formation drive AMD pathobiology.
123 BrM is an acellular 3-layered (inner collagenous, elastic, and
124  outer collagenous layers) ECM abutted by the RPE and chori-
125  ocapillaris endothelial cell basal lamina. BrM is composed of
126 collagens (type IV collagen in RPE basal lamina and type I and III
127 collagens in the ICL) (19-21), laminins (20, 22), fibronectin
128 (21) and sulfated glycosaminoglycans (GAGs), including hepa-
129 ran sulfate (HS) (23-25). However, the compositional changes
130 of BrM in AMD and the relationship of these changes to lipo-
131 protein particle retention are not understood. Given the simi-
5 larities between plasma and BrM lipoproteins, the sub-RPE
lipoprotein retention hypothesis of drusenogenesis is analogous
135 6 the subendothelial ECM retention hypothesis in atheroscle-
134 rosis (26, 27). Studies in atherosclerosis have shown that
135 increased retention, rather than increased influx, of lipoproteins
136 is the primary factor driving subendothelial retention (26, 27).
137 'This retention is facilitated by the interaction of negatively
138 charged sulfated GAGs in the arterial ECM with binding sites
139 on apolipoproteins made up of positively charged amino
140 acids (28-31).
141 In this study, we sought to analyze the changes in GAG content
142 and composition to BrtM in AMD and to elucidate the role of
143 BrM in lipoprotein retention. We show that the predominant
144 GAG in BrM is HS, which is increased twofold in AMD macula
145 compared to controls. In addition, we show the interaction of
146 lipoproteins and sulfated GAGs by scanning SEM in AMD BrM
147 and quantify the interaction between lipoproteins and human
148 BrM HS using quartz crystal microbalance biosensor (QCM)
149 containing immobilized BrM. This interaction can be disrupted
15§10 with exogenous heparin, suggesting a therapeutic direction for
151 drusen removal from the retina.
152
153 Results
154 Glycosaminoglycan Analysis of AMD BrM. We analyzed the GAG
155 composition of BtM in normal and AMD retina (Fig. 1 and
156 g1 Appendix, Table S1) from eyes genotyped for the major high-
157 risk alleles (SI Appendix, Tables S2 and S3). Fundus photographs
158 were taken of all postmortem globes to stage AMD. Representative
159 fundus photos from an aged control (Fig. 14, Lef?) and intermediate
160 AMD with drusen deposition (Fig. 14, Right) are shown. GAGs
161 were extracted from human postmortem BrM tissue and quantified
162 by glycan reductive isotope labeling (GRIL) LC/MS analysis of
163 disaccharides liberated by digestion of the GAGs by bacterial
164 chondroitinase ABC [to measure chondroitin sulfates (CS)] or
165 heparin lyases [to measure heparan sulfate (HS)]. GRIL-LC/MS
166 analysis of total GAG in macula and periphery of postmortem BrM
167  tissue from aged controls and patients with early/intermediate AMD
168 showed that HS is the predominant GAG present within BrM and
169  the total amount of HS relative to protein is higher in early and
170 intermediate AMD macular BrtM (335 + 56 ng HS controls vs
171 528 + 70 ng HS AMD, P<0.05, Fig. 1B and S Appendix, Table S1).
17 Disaccharide analysis of HS showed an increase in the unsulfated
173 disaccharide DOAO (174 + 26 ng control vs 270 + 32 ng AMD,
174 P<0.05), the monosulfated disaccharides DOSO (63 + 13 ng control
175 vs 100 + 16 ng AMD, P = 0.09) and DOA6 (32 + 5 ng control
176 vs 48 + 6 ng AMD, P = 0.07), the disulfated disaccharide D2S0
(13 £+ 8 ng control vs 19 + 10 ng AMD, P=0.25), and the trisulfated
177" disaccharide D286 (20 £ 7 ng control vs 41 + 9 ng AMD, P = 0.08)
20of8 https://doi.org/10.1073/pnas.2500727122

(Fig. 1 Cand D, SI Appendix, Table S1). It is noteworthy that the
relative mole percentage of the individual HS disaccharides did
not change, suggesting a generalized increase in HS chains and no
relative increase in specific disaccharides (Fig. 1E). The elevated
amount of HS levels in BrtM did not correlate with common AMD
risk single nucleotide polymorphisms at Chromosome 1q32 or
Chromosome 10926 (81 Appendix, Tables S2 and S3). Interestingly,
CS analysis showed no changes in composition or content in the
AMD macula (Fig. 1 F~H). A comparison of GAGs obtained from
the region peripheral to the macula in AMD and controls did not
reveal any changes in composition or content of HS (87 Appendix,
Fig. $2 A-C) or CS (8] Appendix, Fig. S2 D—F). Thus, the increase
in HS was restricted to the region of high drusen content. The
accumulation of highly negatively charged HS in AMD BrM
implies that overall charge of BrM is dramatically increased.

Given the potential role of HS to trap lipoproteins in AMD
BrM, we examined its localization in BrM and in drusen by immu-
nohistochemistry. Samples were treated with heparin lyases, which
depolymerizes the chain and leaves behind a core protein with HS
“stubs” which contain a neoepitope recognized by mAb 3G10.
Staining of treated samples showed that HS proteoglycans are
present in AMD BrM and encapsulates drusen and/or are present
in a thin layer of BlamD (Basal laminar deposits) overlying drusen
(SI Appendix, Fig. S3, Top panel). Interestingly, staining samples
with mAb 10E4, which specifically recognizes N-sulfated HS
showed diminished N-sulfated HS underlying drusen (57 Appendix,
Fig. S3, Bottom panel). It is also noteworthy that reduced HS
staining was detected in the core of drusen (S Appendix, Fig. S3,
Top and Middle panels).

Heparan Sulfate Colocalization With Lipoprotein Particles in
AMD BrM. Scanning electron microscopy with Ruthenium Red
staining was performed to examine the localization of HS in AMD
BrM (N = 2 subjects) (Fig. 24, black staining). Intense Ruthenium
Red staining was observed in the ICL of BrM. Strikingly, spherical
particles that resemble lipoproteins or vesicles within the ECM
were abundant anterior to HS in BrM. We refer to these particles
as lipoprotein-like particles given their morphology on SEM. The
particles were manually annotated (orange) and their distribution
was determined across the specimen by creating a 1 micron? grid
(Fig. 24). Analysis of the coverage area of the particles (Fig. 2B)
within BrM (orange and Zone -1 to 1 demarcates the most
posterior border of HS staining in BrM) shows that the retention
occurred anterior to BrM HS. The average diameter of these
particles did not vary significantly (Fig. 2C). The particles that
aggregate anterior to BrM HS in drusen (Fig. 2 D—F) had similar
characteristics (Fig. 2F). These findings suggest that BrtM HS
might act as a nidus for lipoprotein retention.

ApoA1-Containing Lipoprotein Particles are Eluted from
BrM with Heparin. Based on the electron microscopy findings
and prior work demonstrating the presence of lipoproteins in
BrM, we examined the role of HS in lipoprotein retention (5).
Immunohistochemistry of small and med/large drusen in patients
with AMD had detectable levels of apolipoprotein ApoAl
[characteristic of high-density lipoproteins (HDL)] (Fig. 34, 7op
panel). ApoB100 [characteristic of low density (LDL) and very low-
density lipoproteins (VLDL)] was also present on some drusen but
identified less frequently than ApoAl by immunohistochemistry
(Fig. 3A). To further analyze the lipoprotein class associated with
BrM HS, BrM were isolated from aged donors (N = 12 subjects),
gently minced, and incubated with 1 mg/mL of pharmaceutical
grade unfractionated heparin to displace any bound lipoproteins.
Displaced lipoprotein particles were separated by fast protein liquid
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Fig. 1. Glycosaminoglycan analysis of AMD macula BrM. Representative photos of postmortem globes after removal of the neural retina in normal aged controls 338

(Left) and early/intermediate AMD (Right). Orange arrows indicate the presence of many intermediate and some large drusen in a patient with intermediate AMD
(A, Left panel). (B) Analysis of the total BrM protein, heparan sulfate, and chondroitin sulfate content in BrM in the macula BrM and peripheral BrM shows that

339

BrM contains a high content of HS, and we detected statistically significant higher level of BrM HS in the macula of patients with early and intermediate AMD 340
(N =7 subjects; 12 eyes, S| Appendix, Table S1 for demographics) compared to aged controls (N = 11 subjects; 17 eyes, S/ Appendix, Table S1 for demographics). 341
(C-E) Macular BrM HS disaccharide composition analysis shows a generalized increase HS disaccharide content including unSulf and highly sulfated species

(Cand D), but when normalizing to HS mole percentage all differences disappear (E) suggesting that the amount of HS and not the composition of HS is significantly 342
altered in AMD BrM. In contrast, macula chondroitin sulfate composition is unchanged (F-H). Structures of disaccharide units used for glycosaminoglycan analysis 343
are shown in S/ Appendix, Fig. S1. Mac—macula, Ret—Retina, UnSulf—unsulfated, 1-Sulf—one sulfate group, 2-Sulf—two sulfate groups, 3-Sulf—three sulfate 344
groups, N/D—not detected. * indicates P < 0.05. The scale bar indicates optic nerve head vertical diameter.

chromatography (FPLC), and the fractions were analyzed for the
presence of esterified cholesterol given the abundance of esterified
cholesterol in all lipoprotein classes. FPLC fractionation showed
two prominent peaks. A first peak, enriched for unesterified
cholesterol (Fig. 3B, fraction 1 to 6), had no detectable levels of
apolipoproteins ApoAl (characteristic of HDL) and ApoB100
(characteristic of LDL and VLDL) (Fig. 3C, fraction 1 to 6).
A second peak contained mostly esterified cholesterol (Fig. 3B,
fraction 15 to 23) and HDL-associated ApoA1 (Fig. 3C, fraction
16 to 24). It is notable that ApoB100 particles were present in
some samples but identified less frequently than ApoAl. These
results indicated that HDL-like lipoproteins were present in
BrM and dissociable by heparin, consistent with the idea that
the particles were associated with endogenous BrM HS.
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345
346

Lipoprotein Binding in BrM Is Dependent on Heparan Sulfate. To 347
directly test whether lipoprotein retention depends on the physical ~ 348
interaction of the lipoproteins with BrtM HS, we useda QCM. In 349
these experiments, 4 mm diameter punch biopsies from human 350
postmortem BrM (N = 2 subjects) were applied to gold plated 351
QCM chips oriented with the ICL of BrM facing away from the =~ 352
chip and exposed to the analyte solution. The samples were air 353
dried at 4 °C overnight and rehydrated in PBS. Human plasma 354
HDL was used in these studies because the recovered lipoproteins 355
from BrM is low. To measure binding, purified plasma HDL (25- 356
400 pg/mL) was added as the analyte and flowed over to the chip 357
at 10 ul/min (Fig. 4). Association times were measured for 900s. 353
Under these conditions, exogenous plasma HDL showed high 359
affinity binding (~195 nM) to BrM and saturability (Fig. 4C). 34

https://doi.org/10.1073/pnas.2500727122 3 of 8


http://www.pnas.org/lookup/doi/10.1073/pnas.2500727122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2500727122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2500727122#supplementary-materials

4 0f 8

B = BrM HS
g ™
< S 15
© m
-é = 104
§ S s
T
54321123456
C BrM Zones (um)
o 150 BrM HS
©
£
8 100 } I
(=
£
o 80
8- o
1S
SE o
54321123456
BrM Zones (um) . ) ) . )
Fig. 2. Particle retention anterior to HS in BrM. Repre-
D E 154 BrMHS sentative scanning electron microscope sections stained
o with Ruthenium Red and subsequent particle analysis
RPE I Zo of BrM and drusen in 83-y-old female with early AMD
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7 %ﬁ 8 B1rM220‘:'1es6(184 121;2 14 1 um? posterior and anterior to the GAG staining in BrM
6 i ‘ F i (A), respectively. Each additional zone is 1 um? anterior or
5| o5 | 5 2004 BrMHS posterior. For analysis of drusen (D) 1.4 um? was used.
g S | 5 Analysis of the coverage area (B) and diameter (C) of par-
> g 1504 ticles within BrM (orange and Zone -1 to 1 demarcates
BrM'{ : 2 a the most posterior border of HS staining in BrM) shows
HS 18 SIS - that the retention of particles occurs anterior to BrM HS
2| & § 100 (B), however, particle diameter is largely unchanged (C).
3 = This same analysis was performed underlying drusen
cc 8‘ E 50 (D-F), where particles also are present anterior to BrM
3 % £ 0 HS (D-£) and particle diameter is also unchanged (F). RPE
' T T BLam—retinal pigmented epithelium basal lamina, BrM
3-12 46 8101214 HS, Bruch’s membrane heparan sulfate, CC—choriocap-
BrM Zones (1 4 p.m) illaris. (Scale bar, 1.4 um, Aand C.)
Binding was dependent on BrM HS because degradation of HS BrM and is a major factor in the retention of lipoprotein-like
by heparin lyases dramatically reduced HDL binding (Fig. 4 D-E).  particles in the early and intermediate stages of AMD. Our find-
To test whether HDL binding to BrtM could be blocked by exog-  ings also establish alteration of BtM HS is a viable pharmacologic
enous GAG, we mixed heparin with plasma HDL and applied the ~ target in AMD. The inhibition of lipoprotein binding to BrM by
mixture to the chip. Heparin showed a dose-dependent inhibitionof ~ heparinoids suggests a potential pharmacological approach for
binding (Fig. 47). The unfractionated heparin used in this study binds ~ preventing lipoprotein deposition. Their ability to displace lipo-
and activates antithrombin which inhibits coagulation through inac- ~ proteins bound to BrM suggests a potential pharmacological
tivation of several plasma serine proteases. To circumvent this poten-  approach for reversing lipoprotein deposition.
tially significant side effect profile, we examined heparin-like material These findings open additional unanswered questions regarding
derived from MST mastocytoma cell lines (TEGA Therapeutics, Inc.) the regulation HS and origin and identity of the lipoprotein par-
which lack anticoagulant activity (32). HS09, a form of nonantico- ticles aggregating into BrM. HS is assembled by the copolymeri-
agulant MST heparin that lacks the key 3-O-sulfate group required ~ zation of glucuronic acid and N-acetylglucosamine residues to a
for antithrombin binding, blocked HDL binding. HS37, which lacks ~ linkage tetrasaccharide covalently bound to a proteoglycan core
2-0- and 3- O-sulfation had a similar effect (Fig. 4G). HS37 does not protein (33). A family of sulfotransferases and an epimerase mod-
bind to platelet factor 4 and thus has diminished ability to induce, ifies these residues in segments, creating sulfated domains of vari-
another side effect of heparin, heparin-induced thrombocytopenia ~  able length interspersed by nonsulfated domains (33). The diversity
(32). These findings indicate that HDL binding can be diminished ~ of HS is due to variable chain length (catalyzed by the glycosyl-
with modified forms of heparin, consistent with the observation that transferase enzymes Extl and Ext2) and variable sulfation (cata-
binding occurs to HS in BrM. lyzed by the sulfotransferase enzymes NDST1:N-acetylglucosamine
N-deacetylation-N-sulfation, HS2ST 1:uronyl 2- O-sulfation, and
Discussion HS6ST1:N-acetylglucosamine 6-O-sulfation) (33). HS chains also
undergo remodeling by heparanases, which trims the chains, and
Prior research has established that lipoprotein aggregation in BrM ~ endosulfatases that selectively remove 6-O-sulfate groups after their
is a prominent aging effect and a key early event in the formation ~ presentation in the ECM (33). The factors that regulate the com-
of drusen and the pathogenesis of AMD. Our study adds to these position of the chains are diverse and reflect both the metabolic
findings by establishing that HS is significantly increased in AMD  state of the cells, as well as the expression levels of the enzymes,
https://doi.org/10.1073/pnas.2500727122 pnas.org
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and the core proteins. Nothing is known about the mechanism of
HS regulation in BrM in healthy or AMD retina.

Histologically, prior to AMD onset, lipoprotein-like particles
accumulate in BrM (18, 34). These particles appear to be heter-
ogenous in morphology and may be a mixture of membrane ves-
icles and lipoproteins like those found in plasma HDL. However,
the origin and the subclass of the lipoprotein-like particles that
aggregate in BrM are not well described. Prior studies have pro-
vided conflicting evidence, with some studies suggesting ApoB100
containing VLDL-like particle aggregates in BrtM (35, 36), whereas
recent evidence suggests ApoAl-containing HDL-like particle
aggregates in BrM (25). Human RPE cells express apolipoproteins
and other genes involved in lipoprotein metabolism (37). Notably,
large population-based clinical studies have correlated high serum
HDL levels and single nucleotide polymorphisms in the reverse
cholesterol transport pathway to AMD (2, 38—41). These obser-
vations are increasingly relevant to the aging community, given
the interest in augmenting the reverse cholesterol transport path-
way and HDL serum profiles for the treatment of cardiovascular
disease. In fact, in 2022, Nordestgaard and colleagues reported
that cholesteryl ester transferase (CETP) deficiency, mimicking
pharmacological inhibition of CETD, was associated with a lower
cardiovascular morbidity but markedly higher risk of AMD (39,
42-44). In our analysis of BrM lipoprotein accumulation, we
found both ApoA1 and ApoB100 containing lipoprotein particles
were present in BrM and drusen, but ApoA1-containing lipopro-
tein particles appear to be the predominant lipoprotein particle
based on our methodology. However, the pathobiology of HS
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Med/Large Drusen

Fig. 3. ApoATl-containing lipoproteins are removed from
BrM with heparin. (A) Representative histology sections
from a patient with intermediate AMD with small drusen
(Left) and med/large drusen (Right) stained for lipoprotein
markers ApoA1 (A, Top panel) and ApoB100 (A, Bottom
panel). ApoA1 staining was observed frequently in
drusen and Bruch’s membrane (N = 4 subjects, 73-y-old
male with intermediate AMD, 86-y-old female without
AMD, 90-y-old male with early AMD, and 95-y-old female
with early AMD). (B and C) Bruch's membrane from
aged postmortem donors was minced and treated with
heparin to elute lipoproteins (N = 12 subjects, 75 to 95 y-
old). (B) FPLC fractionation shows two prominent peaks,
a peak at fraction 4 largely composed of unesterified
cholesterol (B, fraction 1 to 6), and no detectable
levels of the apolipoprotein core proteins ApoA1 and
ApoB100 were identified (C, fraction 1 to 6). A second
peak at fraction 19 and 20 contains mostly esterified
cholesterol (B, fraction 15 to 23) and contains the HDL-
associated ApoA1 core protein (C, fraction 16 to 24). HDL
and LDL were positive controls for ApoA1 and ApoB100,
respectively. AF—autofluorescence, FPLC—fast protein
liquid chromatography, HDL—high-density lipoprotein.
RPE—retinal pigmented epithelium, CC—choriocapillaris.
(Scale bar, 10 um.)

LDL

retention extends beyond HDL particles in BrM, as HS has been
shown to interact with a diverse range of macromolecules, includ-
ing other ApoE containing lipoproteins, proteins, and extracellular
vesicles such as exosomes (33, 45). Given that drusen formation
occurs outside of the blood—retinal barrier, efforts to augment
systemic lipoproteins could also affect AMD progression. Thus,
determining the origin and precise lipoprotein profile in AMD is
an important goal for future of aging research.

In atherosclerosis, it is noteworthy that once retained in the
ECM, lipoproteins aggregate and undergo modifications includ-
ing lipid oxidation which serve as a nidus for inflammation (46).
Analogous biology appears to be occurring in BrM in patients
with AMD (16, 17). A significant contrast lies in AMD, where
the lipoprotein-like material remains extracellular due to the lack
of immune cell infiltration, whereas atherosclerotic plaques typi-
cally exhibit lipid-laden macrophages. Thus, the role of BrM in
immune sequestration of the extracellular deposits is an area of
future study and relevant to AMD pathogenesis.

The application of QCM technology to AMD research is
unique. The ability to immobilize BrtM on gold chips allowed us
to examine lipoprotein binding and its dependence on HS.
Moreover, the method allowed us to show that exogenous heparins
can block binding of lipoproteins to BrM. This observation sup-
ports work showing that heparin inhibits lipoprotein particles
from binding to decellularized RPE cultures (25). The QCM
technology demonstrated here is adaptable to test the binding
properties of BrtM with a range of analytes. Taken together, these
observations open the possibility of using nonanticoagulant forms
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Fig. 4. Lipoprotein particle binding to BrM is dependent on HS. Human BrM punch (N = 2 subjects, 86-y-old female and 80-y-old male, without AMD) were
immobilized on gold-coated Attana QCM biosensors (A). Delta Hz frequencies represent changes in mass on the QCM biosensor. Human plasma HDL analytes
were injected over BrM QCM biosensor to analyze binding affinity (B). At low flow rates (10 uL/s) HDL showed high affinity binding (K, = 195 nM) (C and £).
BrM treated with heparin lyases to remove endogenous HS treated in parallel failed to show binding (D and E). Soluble heparin diminished binding in a dose-
dependent manner (F). Nonanticoagulant forms of heparin (HS09 and HS37) also blocked HDL binding to BrM compared to controls (G). QCM—quartz crystal
microbalance, HDL—high-density lipoprotein.
of heparin and possibly HS as agents to reduce further lipoprotein ~  of mass-tagged standards and summed to give the total weight of GAG and
deposition in patients with AMD and possibly to remove drusen. ~ disaccharide in nanograms.
Human CFH and ARMS2/HTRA1 Genotyping. Postmortem human tissue was
Methods used in the Qiagen DNeasy Blood and Tissue Kit (Cat. No. 69504) spin column
procedure and followed with a PCR using a 55 °C annealing temperature.
Glycan Reductive Isotope Labeling and Liquid Chromatog_raphy/MaSS HTRA1 Forward Primer: CGGATGCACCAAAGATTCTCC; HTRAT Reverse Primer:
spectrometry of GAG. DOUOY eyeswere procured from the San Diego Eye Ban TICGCGTCCTTCAAACTAATGG; CFH Forward Primer: AATCACAGGAGAAATAAATATAGG;
from 65 to 90 y-old, including patients with AMD. A <12-h death-enucleation  CFH Reverse Primer: ATGTAACTGTGGTCTGCGCTT. Following PCR amplification,
interval and <24-h receiving mterva_l were used to ensure GAG stability. After  samples were submitted to Azenta Life Sciences for Sanger Sequencing. Results
removal of the neurosensory retina, high-resolution, digital color fundus photo-  from the sequencing were compared using the Benchling platform. The DNA
graphs were take{n of the pOStel’IOT pole.Ar.lalyS|s of subretlngl drusenoid depOS- sequence of each gene was added to the program from the ensembl ID; CFH
its was not possible in postmortem specimens. AMD grading was pe.rformed (ENST00000367429), HTRAT (ENST00000368984). The sequencing from each
according to the 9-step Minnesota Grading scale and AREDS categories (47).  patient was aligned with the ensembl ID sequence to check for differences at
Macularand superior mid-peripheral punches (6 mm diameter) of the RPE/BrM/ the SNP sites.
choroid complex were performed. BrM was isolated from the RPE/BrM/choroid
complex by microscopic dissection. Clinical data including past ocular history GAGomics Data Analysis. Subject and eye-level demographic and clinical
and AMD status were documented. PCR genotyping was performed on ocular characteristics are displayed as count (%) and mean (95% Cl) for categorical and
tissue for the common CFH (rs1061170) and HTRAT/ARMS2 (rs11200638) single continuous variables, respectively. Comparisons were made across AMD status,
nucleotide polymorphisms (S/ Appendix, Tables S2 and S3). GAGs were quanti- HTRA1 Status Genotypes, and CFH Status Genotypes. Subject-level continuous
fied by GRIL-LC/MS (48). Briefly, GAGs were isolated from tissue after protease and categorical parameters were compared using t-tests and Fisher's Exact tests,
digestion and DEAE anion-exchange chromatography, and the reducing end of respectively. Eye-level continuous parameters were compared using linear mixed-
lyase-generated disaccharides were tagged with ['?CJaniline. Samples were effects models. All linear mixed-effects models were fit with a random intercept to
mixed with ["*C,Janiline-tagged GAG disaccharides standards and quantified adjust for within-subject variability, controlling for the correlated measurements
by LC/MS. Individual disaccharides were quantified relative to known amounts of subjects with both eyes included in the study. When comparisons were made
https://doi.org/10.1073/pnas.2500727122 pnas.org
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across three subgroups, comparisons of subject-level continuous parameters
were evaluated using ANOVA, and comparisons of eye-level continuous param-
eters were evaluated using mixed-design ANOVA. The statistical analysis was
conducted using the R programming language for statistical computing, Version
4.4.0[R CoreTeam (2022).R Foundation. Vienna, Austria]. P-values less than 0.05
were considered statistically significant.

Heparan Sulfate Immunohistochemistry. Postmortem human tissue isolated
from an 86-y-old female without AMD and a 90-y-old male with early AMD from
the San Diego Eye Bank with a postmortem interval of 16 h. The posterior pole
was isolated, and a 4 mm punch of Retina/RPE/Choroid was obtained from the
macula and embedded in OCT and flash frozen without fixation. Cross-sections
(10 um) were cut with assistance from the La Jolla Institute for Immunology
Histology Core. Frozen sections were air dried, fixed with 95% ethanol, and treated
with 0.3% hydrogen peroxide in PBS, and then blocked with 3% BSA in PBST.
Heparin lyase digestion was performed with Hep I/11/11l 5 mU/mLfor 1 h at room
temperature as a control. The tissue was then treated with primary antibody 10E4
or3G10to stain for N-sulfated HS chains or HS stubs (49). Slides were washed and
then treated with secondary donkey anti-mouse IgM peroxidase and anti-mouse
lgG peroxidase, respectively, at 1:2,000. 3,3'-diaminobenzidine and hematox-
ylin treatment were performed and then slides were imaged on a Zeiss Axiolab
Microscope at 100x magnification.

Scanning Electron Microscopy Analysis of GAGs in Human BrM. Postmortem
human tissue isolated from N = 2 subjects (83-y-old female with early AMD and
95-y-old female with early AMD) from the San Diego Eye Bank with a postmortem
interval of less than 5 h.The globe was immediately preserved in 4% paraform-
aldehyde. The posterior pole was isolated, and a 2 mm punch of Retina/RPE/
Choroid was obtained from the macula and fixed in 2.5% glutaraldehyde, 4%
paraformaldehyde in 100 mM sodium cacodylate buffer. Samples were rinsed
and stored in a cryoprotectant 4:3:3;1 x PBS:glycerol:ethylene glycol. A foveal
sample was bisected and embedded in agarose, and 50 to 200 um vibratome
sections were cut. The most intact sections were then used for staining and fixation
with dehydration in ascending concentrations of ethanol and embed in epoxy
resin. The samples were then postfixed with 1.2% glutaraldehyde with 0.05%
ruthenium red and 0.06 M sodium cacodylate buffer, then further postfixed with
1.6% osmium with 0.05% ruthenium red 0.06 M sodium cacodylate buffer (50).
Ruthenium red is a cationic dye used to stain negatively charged GAGs. Ultrathin
sections (60 to 80 nm) were then cut using a Leica UC7/FC7 ultramicrotome (Waitt
Advanced Biophotonics Core, Salk Institute). SEM imaging was performed on
the Carl Zeiss SIGMA Variable Pressure Field Emission Gun Scanning Electron
Microscope equipped with an ATLAS montage imaging module and the Shuttle
and Find correlative microscopy navigation module to generate images and
high-throughput workflow (Waitt Advanced Biophotonics Core, Salk Institute).
Lipoprotein-like particles were identified based on the characteristic spheroid
shape and homogenous electron lucent core morphology. SEM sections with
drusen deposits (N = 3 sections) in BrM were analyzed using segmentation
with ImageJ to determine the distribution of particle diameter and percent area
of occupied by particles in various zones. Ruthenium red staining was used to
identify GAGs on SEM images. Zones (1 um?) were created for analysis of GAG-
lipoprotein spatial relationship where the border between Zone —1 and Zone 1
is defined as the 1 um? posterior and anterior to the GAG staining in BrM,
respectively. Fach additional zone is 1 um? anterior or posterior. For analysis of
drusen, 1.4 um? was used. Statistical analysis of particle size and spatial rela-
tionship between GAGs was performed using GraphPad software. Representative
images were displayed.

ApoA1 and ApoB100 Immunohistochemistry. Postmortem human tissue iso-
lated from 4 subjects (73-y-old male with intermediate AMD, 86-y-old female
without AMD, 90-y-old male with early AMD, and 95-y-old female with early
AMD) from the San Diego Eye Bank with a postmortem interval of less than 24 h.
Briefly, macular sections were embedded in OCT and flash frozen, and thin sec-
tions were cut with assistance from the La Jolla Institute for Immunology Histology
Core. Frozen sections were dried, fixed with 95% ethanol and treated with 0.3%
hydrogen peroxide in PBS and then blocked with 3% BSA in PBST. The tissue
was treated with primary antibody Anti-Human ApoA1, rabbit IgG (R7D Systems
Cat# MAB36641). For ApoB100, the primary antibody used was Biotin-Goat
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anti-Human ApoB100 (Academy Bio-Medical Company, Cat# 20B-G1a). Slides
were washed and treated with 1:2000 dilution secondary antibody. For the ApoA1
slides, the secondary antibody used was Invitrogen Alexa Fluor 488 donkey anti-
rabbit IgG (Invitrogen, ThermoFisher Cat# A21206), and for the ApoB100, the
secondary antibody was Streptavidin Alexa Fluor 488, conjugate (Invitrogen,
ThermoFisher, Cat# S32354). RPE autofluorescence was distinguished using
unstained slides and overlay with 596 excitation and 615 emissions. Control
slides did not have secondary antibody. Representative images were displayed.
Nuclear staining done using 1:5000 Hoechst stain. Slides were imaged on a Zeiss
AXIO Observer D1 Microscope at 63x magpnification.

BrM Lipoprotein Particle Separation by Fast Protein Liquid Chromato-
graphy. Aged BrM (N = 12 subjects, aged 75 to 95 y-old) was isolated using
gentle mechanical dissection and then minced with a razor blade and then incu-
bated overnight at 4 °C with 1 mg/mL pharmaceutical grade heparin (derived
from porcine intestinal mucosa, Shenzhen Hepalink Pharmaceuticals) in sterile
PBS on a plate rocker. Soluble particles were then concentrated to 250 pl in
volume using 3000 molecular weight cutoff centrifugal filters (Amicon Ultra-3 K,
Sigma-Aldrich) and separated by gel-filtration fast protein liquid chromatogra-
phy. Samples were loaded on a GE Superose 6 10/30 GLcolumnin 0.15 M sodium
chloride containing T mM ethylenediaminetetraacetic acid and 0.02% sodium
azide, pH 7.4.Thirty six fractions of 0.5 mLwere collected (0.5 mL/min). Esterified
and unesterified cholesterol were determined using Amplex Red Cholesterol
Assay Kit on FPLC fractions (Invitrogen; A12216).

Western Blots. FPLC samples were concentrated (Amicon Ultra-3 K, Sigma-
Aldrich), and then pooled fractions were reduced with beta-mercaptoethanol,
fractionated by SDS-PAGE on 4-12% Bis-Tris gradient gels (NuPage, Invitrogen),
and transferred to a PYDF membrane (Power Blotter Select Transfer Stack; Thermo
Fisher Scientific; PB5210) using lab standard methods. Membranes were blocked
with fish serum blocking buffer (Thermo Scientific; 37527)for 1 h and incubated
overnight at4 °Cwith respective antibodies. Secondary antibodies were incubated
for 1 h the following day and visualized with an Odyssey IR Imaging System
(LI-COR Biosciences). Western Blot antibodies include Biotin-Goat Anti-Human
ApoB-100 (Academy Biomedical Company, Inc; 20B-Gla; 1:5000), rabbit mon-
oclonal anti-hApoAT (R&D Systems; MAB36641; 1:500), Streptavidin (LicorBio;
926-68031; 1:5,000), and goat anti-rabbit (LicorBio; 926-32211; 1:5,000)

Quartz Crystal Microbalance of BrM using Heparin and Full-length HS spe-
cies. BrM was isolated using gentle mechanical dissection of the overlying RPE and
underlying choroid with Finesse Maxgrip forceps and a Finesse Flexloop (Alcon, CA)
with a dissecting microscope, and gentle decellularization was performed with hypo-
tonicsolutions. Four-mm diameter tissue biopsy punch (Miltex, NJ) of isolated BrM
was positioned on gold-coated Attana QCM chips and dried at 4 °C overnight (Attana
Life Science and Diagnostics, Sweden). BrM punches were treated with a mixture of
heparin lyases I/1I/111(2.5 mU of each/mL, overnight at room temperature). The QCM-
BrM chipsand QCM-BrM chips treated with heparin lyases were analyzed in parallel
on the Attana QCM biosensor to examine the binding of lipoproteins to BrM. After
overnight stabilization, 25 to 400 ug/mL lipoprotein analyte in PBS was injected at
10 ul/min at 22 °C. Association and dissociation were monitored for 500 sand 400s,
respectively. The delta Hz was measured for 30 min generating long association and
disassociation phases. Kinetic binding curves were used to calculate the apparent
affinity (Kp) and association (k,) and disassociation (k,) rates for various lipoprotein
species. Two independent experiments were conducted using Bruch’s membrane
(BrM) from two subjects (N = 2) to support the reproducibility of the findings.

Data, Materials, and Software Availability. All study data are included in the
article and/or SI Appendix.
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